(Start a new page.) Question 1.

- Given that P, Q, R are the points (1,3), (2,0), and (5,1) **a**) respectively:
 - show that the line PQ is perpendicular to QR;
 - (ii) prove that the triangle PQR is isosceles;
 - (iii) find the coordinates of S, such that PQRS is a square.
- A triangle LMN is right angled at L. **b**) If LM=x, NM=x+3, and NL=5, find x.

Find the exact area of the arrow head, where AC = BC = 6 cm and $\angle ACB = 45^{\circ}$.

Joan invested \$5,000 at the beginning of 1985 at 8% per annum, **d**) compounded at the end of each year. What will her investment be worth at the end of 1995?

(Start a new page.) Question 2.

- Differentiate: a)
- (i) x^2e^x (ii) $\ln(\cos x)$
- The shaded figure, PQR is a sector of b) a circle, radius 2 cm. Arc PR is 3 cm in length.

- Find angle PQR in radians. (i)
- Find the area of the sector. (ii)
- $\angle ABD = 47^{\circ}$ and $\angle BCG = 133^{\circ}$ Prove that lines DE and FG are parallel.

- Simplify (i) $\sin(\pi x)$
- (ii) $\ln e^{3x}$

Ouestion 3. (Start a new page.)

- a) (i) Integrate $(4x+3)^5$.
 - (ii) Find the exact value of $\int_0^{\pi/6} \cos 2x \, dx$.
- A ship A is 7 km away from a lighthouse L on a bearing of 080° and a ship B is 5 km away from the lighthouse on a bearing 210° as shown in the diagram.

- (i) Find the distance between the ships A and B to the nearest km.
- (ii) Find the bearing of the ship A from the ship B, to the nearest degree.
- c) Solve $2\cos 2x = 1$ for $0 \le x \le 180$.

Ouestion 4 (Start a new page.)

a)

(not to scale)

AB = AC $CE \text{ bisects } \angle ACD$ $CE \perp AD.$

- (i) Find xo, giving reasons.
- (ii) Prove that triangle ACD is isosceles.
- The gradient of a curve is given by $\frac{dy}{dx} = 3x^2 4$.
 - (i)(α) Find $\frac{d^2y}{dx^2}$
 - (β) Find the values of x for which the curve both increases and is concave downwards. Give reasons for your answer.
 - (ii) If the curve passes through the point (1,=2), find the equation of the curve.

Ouestion 5 (Start a new page.)

- a) Consider the curve $y = 4x^3 3x^4$.
 - (i) Find the points where the curve cuts the x-axis.
 - (ii) Find any stationary points and determine their nature.
 - (iii) Find all points of inflexion.
 - (iv) Sketch the curve showing the above results.
- b) Find the area defined by the curve $y = 4x^3 3x^4$ and the x-axis.

Ouestion 6. (Start a new page.)

- a) To start a game a player has to throw a 6 with a die. Find the probability that the player starts at:
 - (i) his first throw.
 - (ii) his second throw.
- The displacement of the piston shown, starting from the middle of the cylinder, is modelled by the equation $x(t) = \frac{1}{4}\sin(\pi t)$, where x is in metres and t in seconds.

- (i) Sketch the displacement-time function for the first 2 seconds.
- (ii) Calculate the total distance over which the piston moves in the first 5 seconds.
- (iii) Calculate the maximum speed of at which the piston moves.
- c) A tree was 12 metres high at the start of a year and it increased by 1.5 metres during that year. If in each succeeding year the growth is $\frac{3}{4}$ of that during the previous year, find the limiting height.

(Start a new page.) Ouestion 7

- A body moves in a straight line. At time t seconds its acceleration is given by a = 6t + 1. At t = 0 the body is at the origin and its a) velocity is -2 m/s.
 - Show that the velocity is given by $v = 3t^2 + t 2$. (i)
 - Determine when the particle is at rest. (ii)
 - Describe the motion. (iii)

The area between the two parabolas $y = -2x^2 + 2$ and $y = -x^2 + 1$ is rotated about the x axis.

Find the volume of the solid thus generated.

(Start a new page.) Ouestion 8

- Simplify $\log_2 18 2 \log_2 \sqrt{3}$. a)
 - Sketch the graph of $y = \ln x$. (ii)
 - Solve the equation $2 \ln x \ln(2x + 3) = 0$. (iii)
- A school is divided in two parts: Senior school with 400 boys and 200 girls and Junior school with 400 girls and 300 boys. b) A first student is chosen at random from the whole school. If this student comes from the Junior school, a second student is chosen from the Senior school; if the first student comes from the Senior school then a second student is chosen from the Junior school. By making use of a tree diagram, or otherwise, find the probability that:
 - the second student chosen will be a girl;
 - if the second student chosen is a boy, he is from the senior (ii) school.

Question 9

(Start a new page.)

In a parallelogram ABCD the sides AB and AD are extended to E and H respectively so that $\frac{AD}{DH} = \frac{BE}{AB}$. Prove that:

- (i) the triangles HDC and CBE are similar;
- (ii) the points H, C and E lie on a straight line.
- b) A prize fund is set up with a single investment of \$20,000, to provide an annual prize of \$1,500. The fund accrues interest at 5% per annum, paid yearly. If the first prize is awarded one year after the investment, find:
 - (i) the value of the prize fund immediately after the first prize has been awarded;
 - (ii) the number of years for which the full prize can be awarded.

Ouestion 10

(Start a new page.)

a) (i) In $\triangle ABC$, BX is perpendicular to AB. Prove that $XC = a(\cos \theta - \sin \theta)$.

(ii) Hence find the exact value of XC when a = 4 cm and $\theta = 30^{\circ}$.

(not to scale)

- One thousand trout, each one a year old, are introduced into a large pond. The number still alive after t years is predicted to be $N = 1000 e^{-0.205t}.$
 - (i) Show that the number of trout decreases at a rate proportional to the number of trout alive.
 - (ii) The weight W(t) (in kg) of an individual trout is expected to increase according to the formula W(t) = 0.1 + 0.5t.

After approximately how many years is the total weight (in kg) of all the trout in the pond a maximum?

